高中學(xué)習(xí)容量大,不但要掌握目前的知識,還要把高中的知識與初中的知識溶為一體才能學(xué)好。在讀書、聽課、研習(xí)、總結(jié)這四個(gè)環(huán)節(jié)都比初中的學(xué)習(xí)有更高的要求。下面就是小編給大家?guī)淼母咧袛?shù)學(xué)學(xué)業(yè)水平考知識點(diǎn),希望能幫助到大家!
高中數(shù)學(xué)學(xué)業(yè)水平考知識點(diǎn)1
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當(dāng)a≠0時(shí),
傾斜角為90度,即與X軸垂直
高中數(shù)學(xué)學(xué)業(yè)水平考知識點(diǎn)2
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
esp.空間向量法(找平面的法向量)
規(guī)定:
a、直線與平面垂直時(shí),所成的角為直角,
b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直
esp.直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
高中數(shù)學(xué)學(xué)業(yè)水平考知識點(diǎn)3
(1)順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開的一種基本算法結(jié)構(gòu)。
順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所
指定的操作。
(2)條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的
算法結(jié)構(gòu)。
條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行
A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。
(3)循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
①一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
②另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
注意:
1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。
2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累
加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計(jì)數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計(jì)數(shù)一次
高中數(shù)學(xué)學(xué)業(yè)水平考知識點(diǎn)4
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
高中數(shù)學(xué)學(xué)業(yè)水平考知識點(diǎn)5
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
(6)顯然冪函數(shù)無界。
2020高二數(shù)學(xué)水平考知識點(diǎn)歸納相關(guān)文章:
1.2020最新高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)5篇精選
2.2020高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)五篇分享
3.2020最新高二數(shù)學(xué)知識點(diǎn)總結(jié)5篇
4.2020高二數(shù)學(xué)重點(diǎn)知識點(diǎn)精選歸納
5.2020高二數(shù)學(xué)知識點(diǎn)梳理五篇
6.2020高二數(shù)學(xué)知識點(diǎn)精選歸納
7.2020高中數(shù)學(xué)必考知識點(diǎn)復(fù)習(xí)梳理5篇精選
8.2020高三必考數(shù)學(xué)知識點(diǎn)歸納大全
9.2020高三數(shù)學(xué)必考知識點(diǎn)復(fù)習(xí)總結(jié)5篇
10.高二數(shù)學(xué)知識點(diǎn)歸納整理分享五篇